

Gluon Polarization From Spin Asymmetry Measurements At PHENIX

Amaresh Datta

(University of Massachusetts)

(on behalf of PHENIX Collaboration)

Outline

- Probing ΔG through polarized p+p collisions
- PHENIX detectors
- Asymmetry measurements at PHENIX
- Constraints on ΔG and global fit
- Outlook

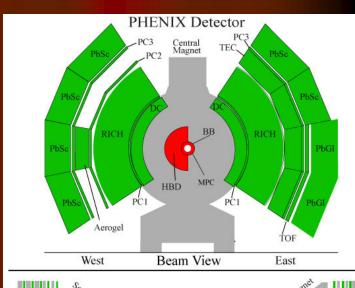
ΔG Through Polarized p+p

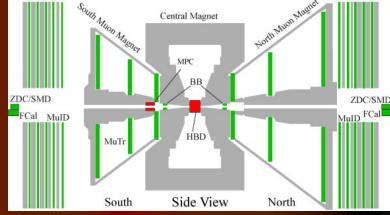
- ΔG is a quantity of interest after 'spin crisis' (EMC results at 1988)
- Accessible from polarized DIS via scaling violations
 - > 2nd order interactions
 - Not enough polarized data
- Polarized hadron collisions : an ideal laboratory to study polarized gluon distributions
 - Pertubative QCD with collinear factorization are the tools to describe the data
- RHIC is a unique facility to study polarized p+p collisions at various energies (62.4, 200, 500 GeV)

PHENIX Detectors

 π^0 , η , γ detection

- Electromagnetic Calorimeter (PbSc/PbGl):
 - High pT photon trigger
 - Acceptance: $|\eta| < 0.35$, $\varphi = 2 \times \pi/2$
 - High granularity (~10*10 mrad²)

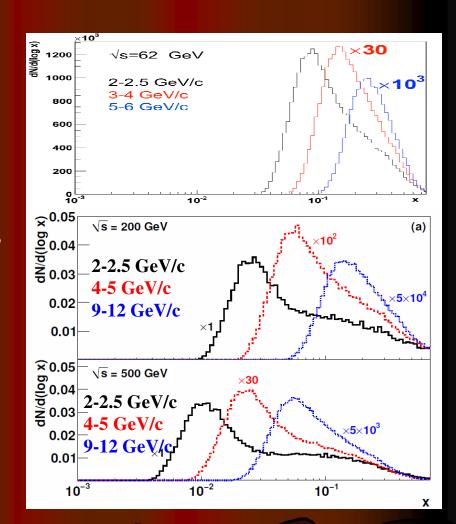

 $\pi^{+}/\pi^{-}, e^{\pm}, h^{\pm}$


- Drift Chamber (DC)
- Ring Imaging Cherenkov Detector (RICH)

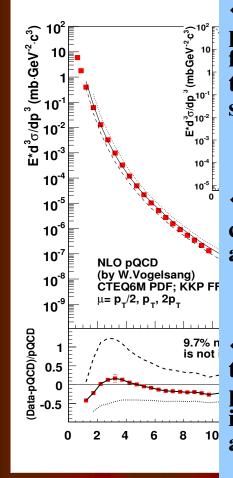
Relative Luminosity

- Beam Beam Counter (BBC)
 - Acceptance: $3.0 < \eta < 3.9$
- Zero Degree Calorimeter (ZDC)
 - Acceptance: ±2 mrad about beam axis

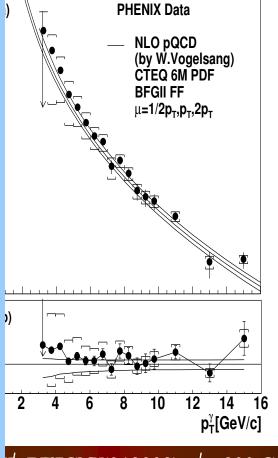
Focus: High granularity and high bandwidth Compromise: Acceptance



Probing Bjorken-x Ranges


- Parton momentum fraction correlated with produced hadron p_T shown
- For similar p_T of produced hadrons, higher energy probes a lower x range $(x_T = 2p_T/\sqrt{s})$
- Asymmetries at various center of mass energies will constrain polarized gluon distribution Δg(x) over wide range of x

Unpolarized Cross-Section and pQCD



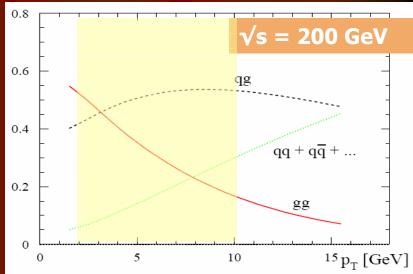
 π^0 : PRD76 (051106)

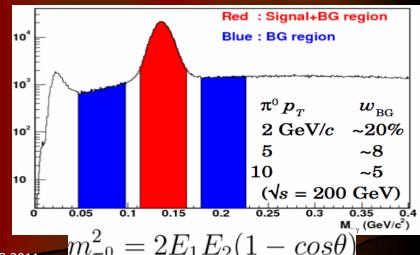
* Framework of pQCD and collinear factorization are tested with cross-section measurements

* NLO pQCD calculations and data are in good agreement

* pQCD can be used to extract gluon polarization information from asymmetries

 $\sqrt{s} = \frac{1}{2} \frac{1}{$

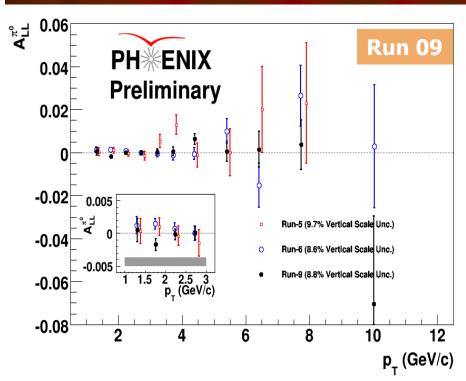


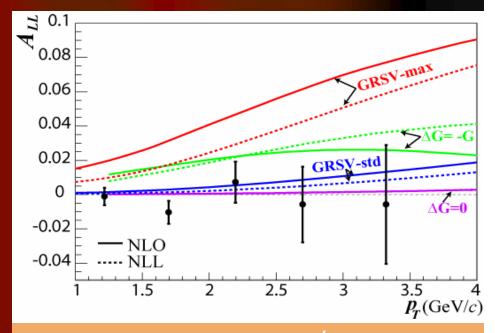

Neutral Pion A_{II}

- The most abundant probe at PHENIX, triggered using electromagnetic calorimeter
- $\pi^0 \rightarrow \gamma \gamma \text{ BR} \sim 98.8 \%$
- Well developed method over the years
- Sensitive to gluon polarization in leading order
- Reconstruct invariant mass from photons in calorimeter and identify pion counts
- Combinatorial background determined from sidebands
- Asymmetry is corrected for background

$$A_{LL}^{\pi^0} = \frac{A_{LL}^{\pi^0 + BG} - w_{BG} A_{LL}^{BG}}{1 - w_{BG}}$$

Partonic contributions

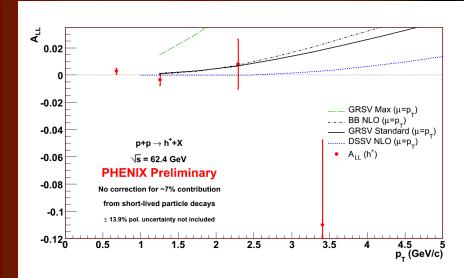


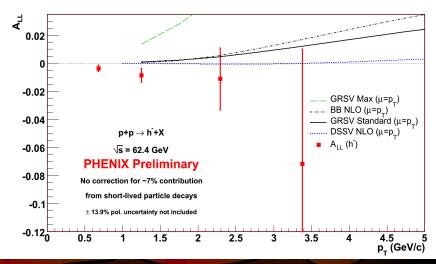

 $m_{\pi^0}^2 = 2E_1 E_2 (1 - \cos \hat{\theta})$

Neutral Pion A

Phys. Rev. D 79, 012003 : $\sqrt{s} = 62.4 \text{ GeV}$

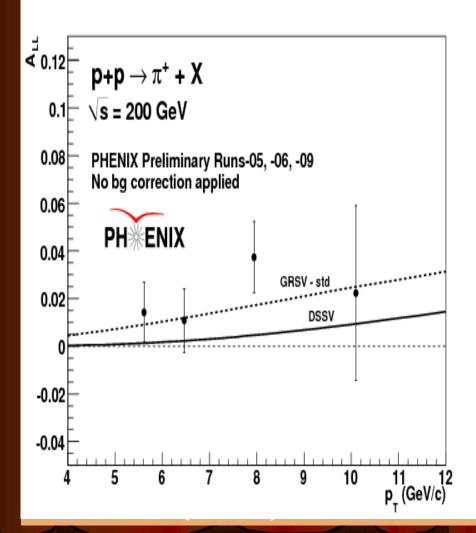
	Year	<p<sub>B> (%)</p<sub>	<p<sub>Y> (%)</p<sub>	L _{analyzed} (pb ⁻¹)	FOM (P ⁴ L)
	2005	50	49	2.5	0.15
4/11/2011	2006	56	57	6.5	0.66
1) 11/2011	2009	57	57	14	1.5

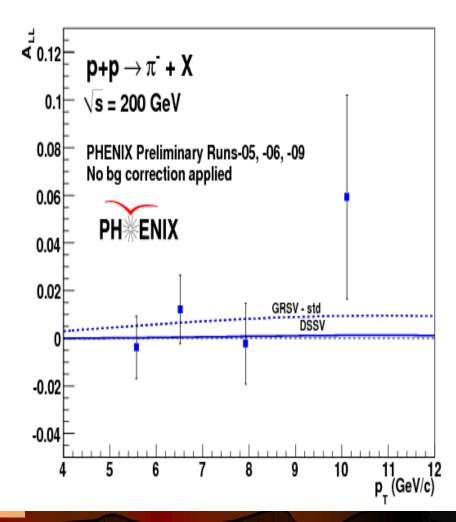

8

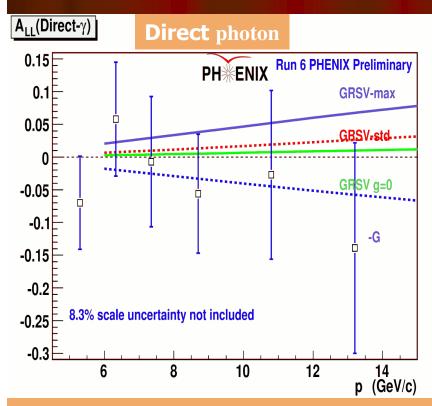


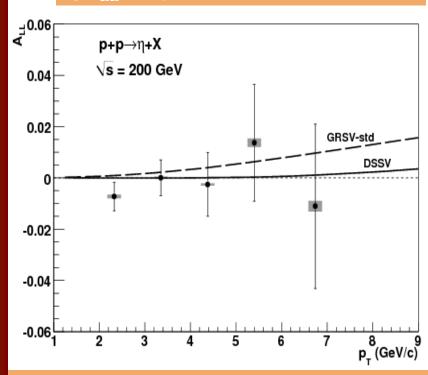
Charged Hadron A_{II} : $\sqrt{s} = 62.4$ GeV

- Hadron counts (N++, N+-) from PHENIX tracking detectors (DC, PC)
- Electron/positron background eliminated by RICH veto
- Asymmetry corrected for background from decays
- Polarization of both beams ~ 48%
- Polarization uncertainty $(\delta < P_B.P_Y > / < P_B.P_Y > = 13.9 \%)$ is an overall scale uncertainty
- Uncertainty of relative luminosity $\delta R \sim 1.4 \times 10^{-3}$ is neglected in comparison


4/11/2011

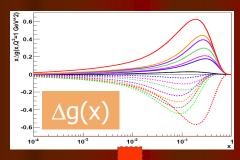

DIS 2011

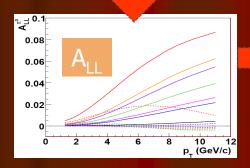


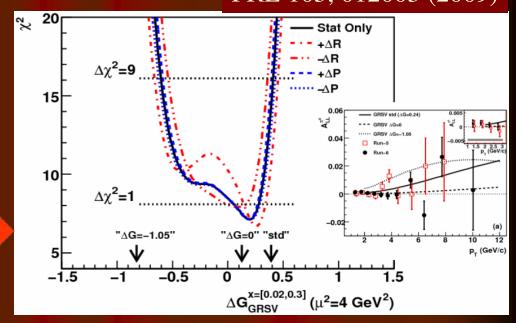

Other Probes

- > Linear in ΔG
- No fragmentation, clean channel
- > Isolation cut for photon candidates
- > Large decay background, pion decay candidates excluded

η A_{LL}: Phys. Rev. D 83, 032001


- > Photons from electromagnetic calorimeter
- > Invariant mass reconstructed (similar to neutral pion analysis)

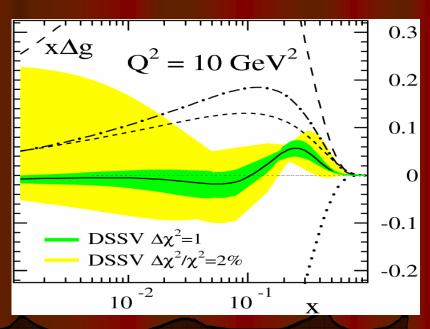




Constraining AG Using ALL

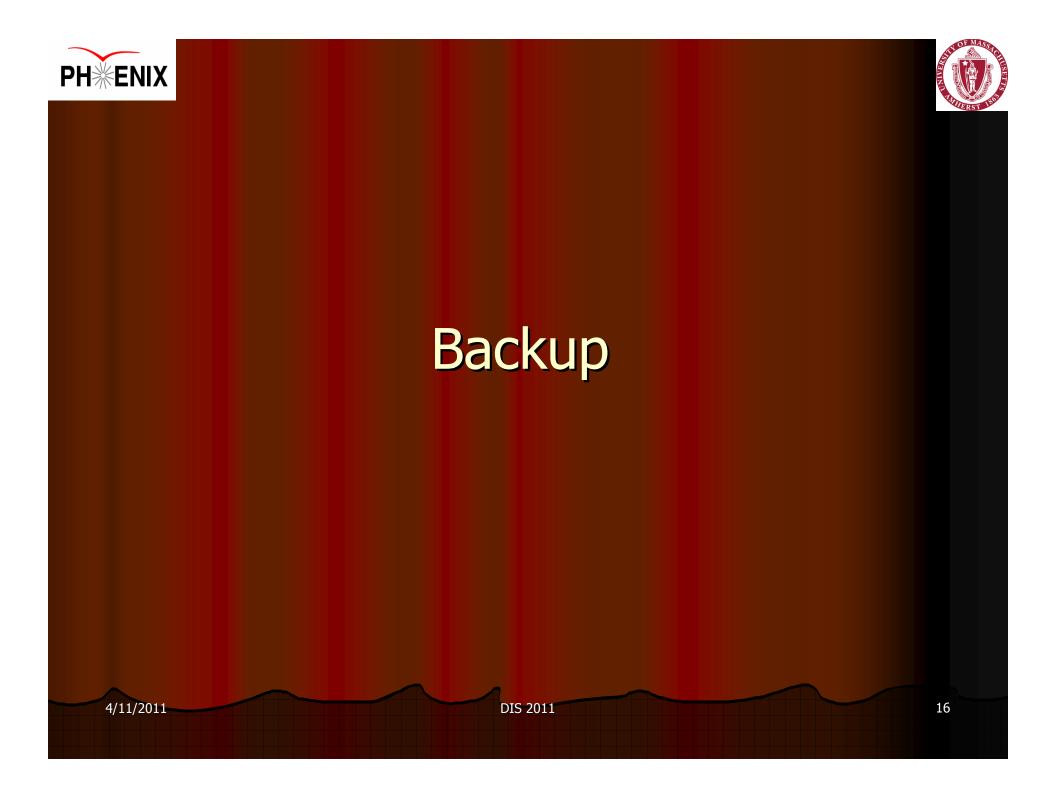
• Generate $\Delta g(x)$ for varying ΔG in GRSV fit, generate A_{LL} for each $\Delta g(x)$, calculate χ^2 for each expectation curve PRL 103, 012003 (2009)

Considering only the statistical uncertainty:


$$\Delta G_{\text{GRSV}}^{[0.02,0.3]} = 0.2 \pm 0.1 \ (1\sigma) \text{ and } 0.2_{-0.8}^{+0.2} \ (3\sigma)$$

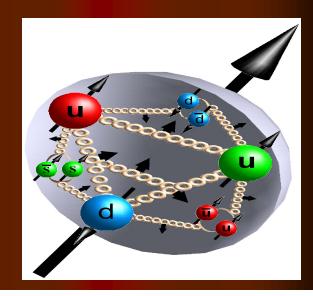
- PRL101, 072001(2008) by de Florian, Sassot, Stratmann, and Vogelsang
- NLO global analysis using polarized DIS, SIDIS and pp results
- PHENIX $\sqrt{s} = 200$ and 62 GeV π^0 data used
- RHIC data significantly constrain ΔG in range 0.05 < x < 0.2
- Parameterize PDF's, calculate A_{LL} with best fit PDF's and calculate $\chi 2$ with world experimental data, calculate best fit of ΔG

TABLE II.	First mom	ents $\Delta f_j^{1,[x_{\min} \to 1]}$ at	$Q^2 = 10 \text{ GeV}^2.$
	$x_{\min} = 0$ best fit	$\Delta \chi^2 = 1^{x_{\min}}$	$= 0.001 \Delta \chi^2 / \chi^2 = 2\%$
$\frac{1}{\Delta u + \Delta \bar{u}}$	0.813	$\frac{\Delta \chi - 1}{0.793^{+0.011}_{-0.012}}$	$\frac{\Delta \chi / \chi - 2 \pi}{0.793^{+0.028}_{-0.034}}$
$\Delta d + \Delta \bar{d}$	-0.458	$-0.416^{+0.011}_{-0.009}$	$-0.416^{+0.035}_{-0.025}$
$\Delta \bar{u}$	0.036	$0.028^{+0.021}_{-0.020}$	$0.028^{+0.059}_{-0.059}$
$\Delta ar{d}$	-0.115	$-0.089^{+0.029}_{-0.029}$	$-0.089^{+0.090}_{-0.080}$
$\Delta \bar{s}$	-0.057	$-0.006^{+0.010}_{-0.012}$	$-0.006^{+0.028}_{-0.031}$
Δg	-0.084	$0.013^{+0.106}_{-0.120}$	$0.013^{+0.702}_{-0.314}$
$\Delta\Sigma$	0.242	$0.366^{+0.015}_{-0.018}$	$0.366^{+0.042}_{-0.062}$



Outlook

- PHENIX π^0 data puts strong constraint on ΔG
- Various channels to probe ΔG are available at PHENIX
 - \triangleright A variety of probing channels puts better systematic constraint on ΔG
 - > Charged hadron and charged pion A_{LL} 's could be useful in determining sign of ΔG
 - > Several recent results could be used in future global analysis
- Looking at uncertainty at low-x region from DSSV plots, it's essential to extend the x-range probed experimentally
- A_{LL} results at $\sqrt{s} = 62.4$ GeV and 500 GeV from PHENIX will extend the horizon of probed x-range
- Higher luminosity, higher polarization and possible trigger for charged pions/hadron will improve data significantly

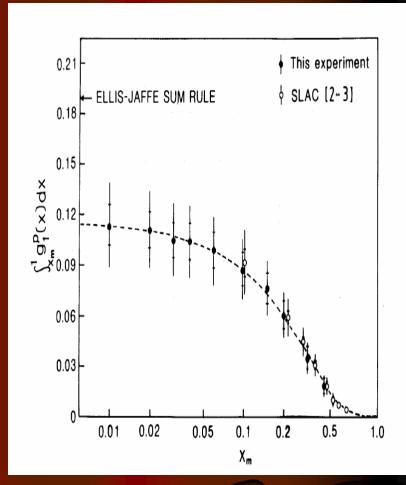


What is ∆G

- Proton is a complex and composite structure of quarks and gluons with total spin of ½ ħ
- Total spin of a composite structure is sum of individual components (spin and orbital angular momenta of quarks and gluons)
- Contribution of spin of all gluons in proton to the total spin of proton is ΔG (difference between same and opposite helicity gluons in polarized proton)

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma(Q^2) + \Delta G(Q^2) + L_q(Q^2) + L_g(Q^2)$$

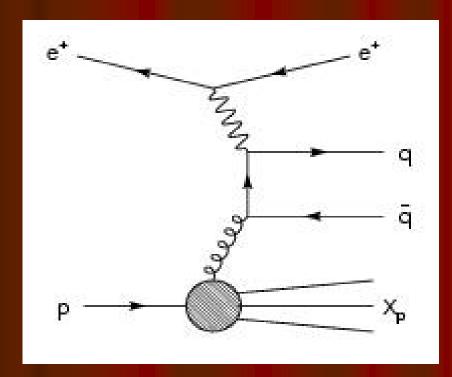
$$\Delta G = \int_0^1 dx \Delta g = \int_0^1 dx [g_+(x, \mu^2) - g_-(x, \mu^2)]$$



Why is it interesting

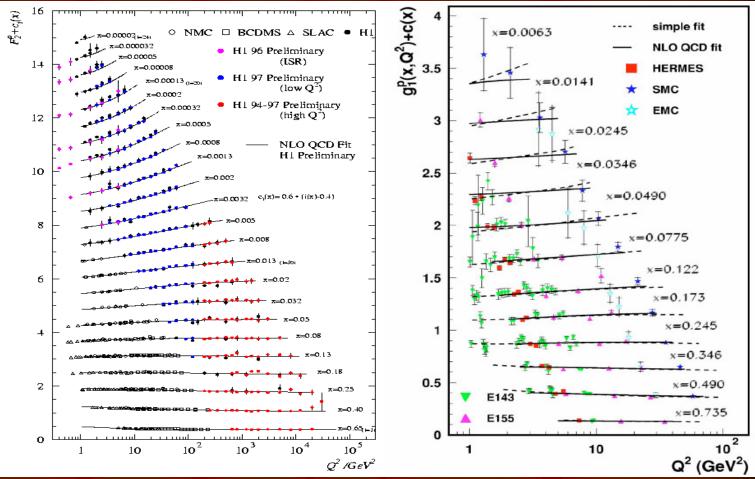
DIS 2011

- Quark spin was expected to carry bulk of the proton spin (~ 60%)
- EMC at CERN conclusively measured quantities (spindependent structure function) that contradicted the scenario of quark spin being the major contributor to the proton spin
- EMC and SLAC results indicated quark spin $\Delta\Sigma$ contribute a fairly small fraction (~25%) to the proton spin



Polarized DIS and Gluon PDF

- Polarized DIS were not ideal for accessing gluon spin
- Gluons interact only via strong force and leptons do not interact via strong force
- DIS probe gluon distributions only at higher order interactions



PH*ENIX Unpolarized and Polarized Structure Functions

Unpolarized

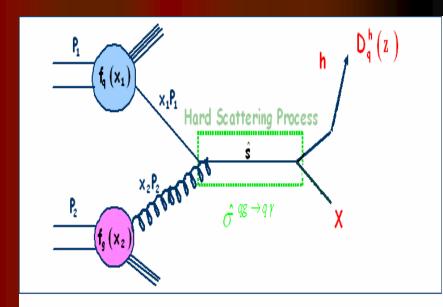
■ Not enough data in different x,Q² range from pDIS exp to extract information with satisfactory accuracy

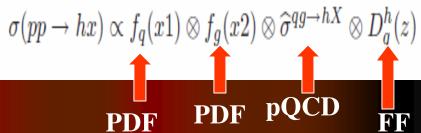
4/11/2011

DIS 2011

Polarized DIS and Gluon PDF

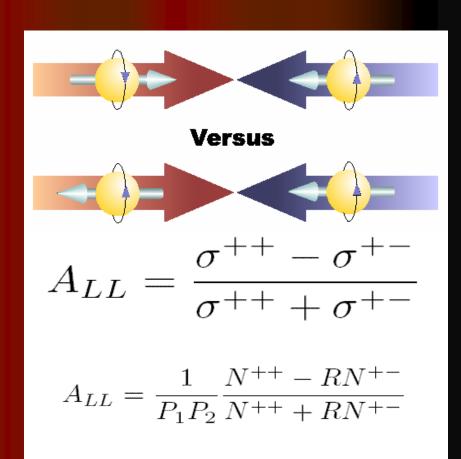
- Bjorken Scaling: At intermediate x and high Q², g₁^p independent of Q² and scales with x
- Scaling violation is observed as positive slope at low x and negative slope at high x
- Q² evolution using DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) equation were used to extract $\Delta g(x)$ (*an indirect way)


$$\frac{d}{dt} \begin{pmatrix} \Delta \Sigma \\ \Delta g \end{pmatrix} = \frac{\alpha_s(t)}{2\pi} \begin{pmatrix} A_{qq} & 2fA_{qg} \\ A_{gq} & A_{gg} \end{pmatrix} \begin{pmatrix} \Delta \Sigma \\ \Delta g \end{pmatrix}$$



Collinear Factorization

- A pp scattering process can be factorized into long-term and short-term components as shown.
 - PDF's of partons (long)
 - pQCD hard scattering crosssection (short)
 - Fragmentation function of hadronization (long)
- Verify framework by comparing un-polarized cross-section with calculations



Double-Spin Asymmetry (A_{LL})

- Difference between two helicity dependent crosssections of particle production as a fraction of the unpolarized cross section
- ++ same helicity
- +- opposite helicity
- N⁺⁺ (N⁺⁻) are counts of a produced species of particle with same (opposite) helicity configuration of the colliding particles
- R = Relative Luminosity= L⁺⁺/L⁺⁻

Accessing ΔG from A_{LL}

Using collinear factorization, one can express the pp cross section as:

$$\sigma(pp \longrightarrow hX) = \Sigma_{a,b,c} \int dx_a \ dx_b \ dz_c \ q_a(x_a) \otimes q_b(x_b) \otimes \widehat{\sigma}^{ab \longrightarrow cX} \otimes D_c^h(z_c)$$

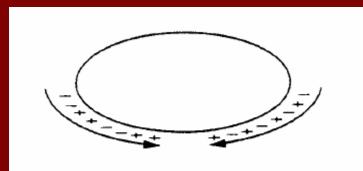
• The asymmetry is defined as:

$$A_{LL} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}}$$

 Assuming a partonic process of qg scattering A_{LL} can be related to the PDF's as:

$$A_{LL} \propto \frac{\Sigma_q \Delta q(x1) \otimes \Delta g(x2) \otimes \Delta \widehat{\sigma}^{qg \to hX} \otimes D_q^h(z)}{\Sigma_q q(x1) \otimes g(x2) \otimes \widehat{\sigma}^{qg \to hX} \otimes D_q^h(z)}$$

- With information of quark PDF's from DIS, of fragmentation functions from SIDIS and e+e⁻ experiments and calculating partonic cross-section using perturbative QCD, gluon polarization
- information Δg is extracted



FOM

 (P^4L)

RHIC as a Polarized p-p Collider

Proton bunches filled with alternating spin combinations

Longitudinal Spin Running in PHENIX

√s [GeV]

L [pb-1]

Pol. [%]

(recorded)

Year Four different spin patterns are u Siberian snakes rotate snin vector 2003

Siberian snakes rotate spin vector	2003	200	0.35	27	0.0019
perturbations cancel on subseque	2004	200	0.12	40	0.0031
stable)	2005	200	3.4	49	0.20
Spin Rotators allow polarization to	2000	200	7.5	57	0.79
longitudinal or horizontal as requ	2006	62.4	80.0	48	0.0042
Absolute (H-jet) and relative (pC r	2009	200	14	57	1.5
measurements	2009	500	14	39	0.21

DSSV: Input world data

Data selection:

"classic" inclusive DIS data

routinely used in PDF fits

 $\Delta q + \Delta q$

semi-inclusive DIS data

first RHIC pp data (never used before)

467 data pts in total (10% from RHIC)

experiment	data	
	type	fitted
EMC, SMC	DIS	34
COMPASS	DIS	15
E142, E143, E154, E155	DIS	123
HERMES	DIS	39
HALL-A	DIS	3
CLAS	DIS	20
SMC	SIDIS, h [±]	48
HERMES	SIDIS, h^{\pm}	54
	SIDIS, π^{\pm}	36
	SIDIS, K^{\pm}	27
COMPASS	SIDIS, h [±]	24
PHENIX (in part prel.)	$200 \text{GeV pp}, \pi^0$	20
PHENIX (prel.)	$62 \text{GeV pp}, \pi^0$	5
STAR (in part prel.)	200 GeV pp, jet	19
TOTAL:		467

Marco Stratmann, Spin'o8